The actin-binding protein UNC-115/abLIM controls formation of lamellipodia and filopodia and neuronal morphogenesis in Caenorhabditis elegans.
نویسندگان
چکیده
The roles of actin-binding proteins in development and morphogenesis are not well understood. The actin-binding protein UNC-115 has been implicated in cytoskeletal signaling downstream of Rac in Caenorhabditis elegans axon pathfinding, but the cellular role of UNC-115 in this process remains undefined. Here we report that UNC-115 overactivity in C. elegans neurons promotes the formation of neurites and lamellipodial and filopodial extensions similar to those induced by activated Rac and normally found in C. elegans growth cones. We show that UNC-115 activity in neuronal morphogenesis is enhanced by two molecular mechanisms: when ectopically driven to the plasma membrane by the myristoylation sequence of c-Src, and by mutation of a putative serine phosphorylation site in the actin-binding domain of UNC-115. In support of the hypothesis that UNC-115 modulates actin cytoskeletal organization, we show that UNC-115 activity in serum-starved NIH 3T3 fibroblasts results in the formation of lamellipodia and filopodia. We conclude that UNC-115 is a novel regulator of the formation of lamellipodia and filopodia in neurons, possibly in the growth cone during axon pathfinding.
منابع مشابه
RACK-1 Acts with Rac GTPase Signaling and UNC-115/abLIM in Caenorhabditis elegans Axon Pathfinding and Cell Migration
Migrating cells and growth cones extend lamellipodial and filopodial protrusions that are required for outgrowth and guidance. The mechanisms of cytoskeletal regulation that underlie cell and growth cone migration are of much interest to developmental biologists. Previous studies have shown that the Arp2/3 complex and UNC-115/abLIM act redundantly to mediate growth cone lamellipodia and filopod...
متن کاملThe Arp2/3 activators WAVE and WASP have distinct genetic interactions with Rac GTPases in Caenorhabditis elegans axon guidance.
In the developing nervous system, axons are guided to their targets by the growth cone. Lamellipodial and filopodial protrusions from the growth cone underlie motility and guidance. Many molecules that control lamellipodia and filopodia formation, actin organization, and axon guidance have been identified, but it remains unclear how these molecules act together to control these events. Experime...
متن کاملSWAN-1, a Caenorhabditis elegans WD repeat protein of the AN11 family, is a negative regulator of Rac GTPase function.
Rac GTPases are key regulators of cell shape and cytoskeletal organization. While some regulators of Rac activity are known, such as GTPase-activating proteins (GAPs) that repress Rac activity, other Rac regulators remain to be identified. The novel Caenorhabditis elegans WD-repeat protein SWAN-1 was identified in a yeast two-hybrid screen with the LIM domains of the Rac effector UNC-115/abLIM....
متن کاملThe actin-binding protein UNC-115 is an effector of Rac signaling during axon pathfinding in C. elegans.
Rac GTPases control cell shape by regulating downstream effectors that influence the actin cytoskeleton. UNC-115, a putative actin-binding protein similar to human abLIM/limatin, has previously been implicated in axon pathfinding. We have discovered the role of UNC-115 as a downstream cytoskeletal effector of Rac signaling in axon pathfinding. We show that unc-115 double mutants with ced-10 Rac...
متن کاملUNC-115, a Conserved Protein with Predicted LIM and Actin-Binding Domains, Mediates Axon Guidance in C. elegans
Axon guidance receptors modulate the growth cone cytoskeleton through signaling pathways that are not well understood. Here, we describe the C. elegans unc-115 gene, which encodes a candidate cytoskeletal linker protein that acts in axon guidance. unc-115 mutants have defects in a subset of axons, particularly as the affected axons change environments during outgrowth. The unc-115 gene encodes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular and cellular biology
دوره 25 12 شماره
صفحات -
تاریخ انتشار 2005